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Abstract

A two-phase 2D la�ice material is identi�ed that possesses both a high macroscopic com-

pliance and a low macroscopic coe�cient of thermal expansion. �e macroscopic e�ective

properties of the la�ice are analysed and the features that give high macroscopic compliance

and low macroscopic actuation strain are identi�ed. A detailed case study is presented to

explore the potential of the la�ice for use as a composite cathode in a solid-state Li-ion bat-

tery, taking into account the swelling of the active cathode material upon lithiation. A design

map is developed to reveal the competition between ba�ery capacity and degradation due to

fracture of the composite cathode. �e intent is to identify promising ba�ery topologies and

compositions by overcoming the usual problems associated with cathode swell during charge

and discharge.

Keywords: Lithium-ion ba�ery, multi-phase la�ice material, Composite electrode, La�ice

material, All-solid-state ba�ery

1. Introduction

�ere has been signi�cant recent interest in the development of la�ice materials that pos-

sess high macroscopic sti�ness and low thermal expansion coe�cient for structural appli-

cations at high temperatures (such as hypersonics). Such la�ices comprise 2 distinct phases

in addition to porosity, and each phase has dissimilar elastic moduli and thermal expansion

coe�cients. In contrast, less a�ention has been paid to the invention of two phase la�ices of
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high macroscopic compliance and lowmacroscopic thermal expansion; we shall show that the

problem of electrode swell in solid-state ba�eries demands the invention of composites that

can accommodate large swelling/contraction of the active material upon charge and discharge,

along with a high macroscopic compliance in order to minimise swelling-induced self-stress

in the ba�ery.

�e la�ice topology proposed by Steeves et al. (2007, 2009) achieves tunable thermalmacro-

scopic expansion, but has a high macroscopic sti�ness. In contrast, Lakes’ la�ices (Lakes,

1996, 2007) have tunable thermal expansions and can exhibit high compliance. However, these

structures require unsymmetric beams to be constructed in an alternating manner, making the

la�ices di�cult to manufacture. Sigmund and Torquato (1996, 1997) have used topology op-

timization to identify topologies of high macroscopic compliance and low thermal expansion

coe�cient. Again, these structures comprise irregular pa�erns and, in common with Lakes’

la�ices, are a challenge to manufacture.

1.1. Motivation of study: application of 2-phase la�ice to solid-state Li-ion ba�ery

La�ice materials of high compliance and low thermal expansion show promise as the com-

posite cathode of a solid-state Li-ion ba�ery. �e composite cathode comprises a solid ceramic

electrolyte to allow for the transport of Li ions and a ceramic electrode material (the active

material) that swells signi�cantly upon lithiation. Swelling due to the absorption of Li ions

is analogous to thermal expansion. Currently, one limit to the energy storage capacity of Li-

ion ba�eries is the fracture of electrodes by stresses induced by non-uniform lithiation during

charge/discharge. �us, there is a need to invent topologies that can accommodate the large

swell of the active electrode material without generation of large self-stresses. �e aim of the

present study is to report on the e�ective macroscopic properties of a candidate compliant and

swell-resistant topology and to scope-out its potential for use as a cathode in a Li-ion ba�ery.

�e geometry of interest is sketched in Fig. 1.

�e conceptual design in the present paper is that of a compliant ba�ery element and not a

structural ba�ery element. �e aim is to design a micro-architectured electrode with two ad-

vantageous features: (i) it undergoes small macroscopic straining upon lithiation/delithiation

of the strut elements, and (ii) is has a low passive sti�ness, such that it generates low levels of

residual stress when the macroscopic straining is constrained by neighbouring elements. In
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contrast, a la�ice of low macroscopic actuation strain, but sti� in the passive state, will gener-

ate much larger levels of residual stress when it undergoes a small macroscopic actuation stain

and is restrained against such expansion by neighbouring elements. Sti� la�ices of lowmacro-

scopic actuation strain have been invented (see for example Steeves et al. (2007)) and have the

potential for use in a structural ba�ery element, but the present concept has the advantage

of ensuring that the stress levels generated by lithiation/delithiation are low regardless of the

level of external constraint.

Electrode elements have also been developed that are based on a monolithic la�ice, such

as a hexagonal la�ice of silicon, see for example the analysis by Bhandakkar and Johnson

(2012). �is geometry is simpler to manufacture than the two-phase la�ice contemplated in

the present study, but it su�ers from the disadvantage that the macroscopic strain equals the

local swelling strain due to lithiation/delithiation. All monolithic la�ices, such as the fully

triangulated la�ice and the Kagome la�ice share this drawback. When the macroscopic strain

is constrained by neighbouring elements, residual stresses are induced and the level of stress is

dictated by the passive sti�ness of the la�ice in relation to that of neighbouring elements. �e

hexagonal la�ice is more compliant than that of the fully triangulated and Kagome la�ices,

and so the level of induced residual stress is less. Additional stress relieving mechanisms

can come into play such as elastic or elastic-plastic buckling of the la�ices when the induced

(compressive) residual stress is of su�cient magnitude. �is scenario has been analysed by

Bhandakkar and Johnson (2012), for example.

In broad terms, the two-phase la�ice of the present study has twomajormerits: it generates

a low value of macroscopic actuation strain, and it has a low passive sti�ness, thereby inducing

a low level of residual stress when constrained by neighbouring elements.

A typical solid-state ba�ery consists of a lithium metal anode, a solid-state electrolyte

which acts as a separator (to allow Li ions to migrate but to insulate against electron �ow),

and a composite cathode (Janek and Zeier, 2016). Typical composite cathodes comprise ac-

tive particles (61 % wt), solid electrolyte (36 % wt) and an electron-conducting powder (3 %

wt) (Kato et al., 2016). Such solid-state ba�eries are �re-proof, and are stable against both

mechanical and thermal loadings (Famprikis et al., 2019).

A number of candidate electrolytes are under development: oxides such as lithium lan-
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thanum titanate (LLTO) and lithium lanthanum zirconium oxide (LLZO), phosphates such

as lithium aluminum titanium phosphate (LATP), and sul�de-based electrolytes such as β −

Li3PS4 and lithium phosphorus sul�de chloride (Li6PS5Cl). �ese ceramic electrolytes exhibit

a higher conductivity to Li ions than polymer electrolytes; however, they also possess a much

higher elastic modulus and a lower fracture toughness, as shown in Table 1. Consequently,

ceramic electrolytes and ceramic composite cathodes may crack due to cathode swell upon

lithiation.

Ceramic cathodes made from lithium nickel cobalt aluminium oxide (NCA) or lithium

nickelmanganese cobalt oxide (NMC) possess a speci�c energy density as high as 200 mA h g−1

but undergo a fractional volume change on the order of 5 % upon lithiation (Koerver et al.,

2018). Other cathodematerial candidates also swell signi�cantly upon lithiation (Fig. 2). More-

over, most cathode materials possess a high value of Young’s modulus and a low value of frac-

ture toughness, as summarized in Table 2. �e problem of stress generation by strainmismatch

between electrolyte and cathode can be alleviated by designing the topology of the compos-

ite cathode such that it has a high macroscopic compliance and a low macroscopic expansion

strain upon lithiation.

Table 1: Mechanical properties and lithium ion conductivity of solid electrolytes. (Refs: (a) Wolfenstine et al.

(2018); (b) Fergus (2010); (c) Wolfenstine et al. (2013); (d) Aono et al. (1989); (e) Deng et al. (2016); (f) Bachman

et al. (2016); (g) McGrogan et al. (2017); (h) Liu et al. (2013).)

Solid Eletrolyte
Young’s modulus

[GPa]

Fracture toughness
[MPa m1/2]

Ion conductivity
[S cm−1]

Perovskite LLTO 200 (a) 1 (a) 1× 10−4 (b)

Garnet LLZO 150 (c) 1 (c) 4× 10−4 (b)

NaSICON LATP 115 (a) 1 (a) 1× 10−3 (d)

Argyrodite Li6PS5Cl 20 (e) 7× 10−3 (f)

β − Li3PS4 20 (g) 0.23 (g) > 1× 10−4 (g,h)

1.2. Scope of Study

In the �rst section of this paper, we propose a hierarchical, 2-phase, micro-architectured

porous solid that is able to accommodate high actuation strains of the active material from
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Table 2: Mechanical properties, lithium di�usivity and electronic conductivity of cathode materials. (Refs: (a)�

et al. (2012); (b) Swallow et al. (2014); (c) Xia et al. (2007); (d) Park et al. (2010); (e) Xu et al. (2017); (f) Amin and

Chiang (2016); (g) Woodford et al. (2013); (h) Amanieu et al. (2014).)

Cathode
Young’s modulus

[GPa]

Fracture toughness
[MPa m1/2]

Li di�usivity
[cm2 s−1]

e– conductivity
[S cm−1]

LiCoO2 190 (a) 0.9 (a,b) 10−10−10−8(c,d) 10−4 (d)

NMC 200 (e) 0.3 (e) 10−10−10−9.5(f) 10−7 − 10−2 (f)

LiMn2O4 143 (g,h) 1 (g,h) 10−11−10−9(d) 10−6 (d)

any source (such as lithiation or thermal expansion mismatch), yet exhibits a low macroscopic

expansion and a low macroscopic sti�ness. �e macroscopic, e�ective properties of the 2D

la�ice are determined as a function of microstructure and constituent properties by an analyt-

ical analysis of the unit cell by elementary beam theory. Periodic cell, �nite element analysis

(again using Euler beam theory) is used to support the development of the analytical model.

In the second part of the paper, a detailed case study for the application of this composite as

a cathode is presented. �e la�ice is optimised for both electrical and mechanical performance

in order to achieve a high energy density, high power density, low internal resistance, and

minimise the risk of fracture due to cyclic charge and discharge.

�e authors recognise that Euler beam theory is inaccurate for a beam of slenderness ratio

below 7, approximately. On the other hand, when the storage material exists as stocky beams,

it is usually much sti�er than the electrolyte which exists as slender beams. Consequently,

the deformation of the slender beams dominates the overall response, and Euler beam theory

su�ces.

2. 2-phase microarchitecture: e�ective properties

Consider the 2D structure as shown in Fig. 1. �e active phase A expands due to an eleva-

tion in temperature, or by the absorption of Li ions. �e passive support structure (electrolyte),

phase B, comprises a sca�old of squares and diamonds, each of side length l. Denote the thick-

ness of phase A by tA, the thickness of phase B by tB and the inclination angle by ω, as shown

in Fig. 1. �e volume fractions fA of phase A, fB of phase B and porosity of intervening air
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spaces fair are given by

fA =
tA

l cos2 ω
, (1)

fB =
2tB

l cos2 ω
, (2)

fair = 1− fA − fB = 1− 1

cos2 ω

(
tA
l

+
2tB
l

)
. (3)

Consequently, the overall relative density of the composite la�ice ρ̄ is

ρ̄ = 1− fair =
tA + 2tB
l cos2 ω

. (4)

�e dependence of these volume fractions upon bar geometry, t̄B = tB/l and tA/tB , is

plo�ed in Figs. 3(a) and 3(b) for two representative angles ω = 0◦ and ω = 20◦, respectively.

Unit cells of four representative structures are included in the �gure.

A periodic cell, �nite element simulation is used to obtain some useful relations between

the macroscopic elastic constants, and to obtain the macroscopic thermal expansion of the

2-phase la�ice. In brief, the FEAP (Taylor, 2017) �nite element package is employed, and the

struts of phases A and B are taken to be su�ciently slender for Euler beam theory to su�ce for

the prediction of macroscopic response. (�is was veri�ed by a limited number of simulations

using 2D continuum elements rather than beam elements.) Analytic solutions are derived in

Appendix A for the macroscopic sti�ness of the 2-phase la�ice under equi-biaxial and shear

loadings by treating all struts as Euler beams.

We begin by summarizing the macroscopic response of the la�ice. Inspection of the com-

posite microstructure reveals that two symmetries exist: (i) 180◦ rotational symmetry with

respect to the central points of all squares and diamonds (denoted by red dots in Fig. A1(a) of

Appendix A); and (ii) gliding re�ectional symmetry along lines connecting edge middle points

of squares and diamonds in the x and y directions (as denoted by red dashed lines in Fig. A1(a)).

Direct inspection suggests that the structure does not possess 90◦ rotational symmetry. How-

ever, �nite element simulations reveal that if we assume inextensional Euler beam theory, the

Poisson ratio in the (x,y) co-ordinate system vanishes, ν̄xy = 0, and the in-plane moduli in the

x and y directions are equal, Ēxx = Ēyy. �e analysis of Appendix A also reveals that the the

in-plane moduli in the x and y directions are equal. Consequently, the number of independent

elastic constants reduce to two: the Young’s moduli Ēxx = Ēyy and the shear modulus Ḡxy.
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Let ε̄axx and ε̄ayy denote the components of macroscopic strain upon imposing an actuation

strain ea in phase A and vanishing macroscopic stress, i.e. σ̄xx = σ̄yy = σ̄xy = 0. �en the

relation between macroscopic stress σ̄ij and strain ε̄ij (i, j = x, y) can be wri�en as
σ̄xx

σ̄yy

σ̄xy

 =


Ēxx 0 0

0 Ēxx 0

0 0 Ḡxy



ε̄xx − ε̄axx
ε̄yy − ε̄ayy

2ε̄xy

 . (5)

Analytical expressions for the macroscopic bulk modulus K̄ = Ēxx/2 and the shear mod-

ulus Ḡxy are obtained by considering two loading cases in turn: equi-biaxial loading (σ̄xx =

σ̄yy = σ̄, σ̄xy = 0), and shear loading (σ̄xx = σ̄yy = 0, σ̄xy = τ̄ ). �e dependence of (ε̄axx, ε̄ayy)

upon the actuation strain ea is obtained from the �nite element (FE) simulations. We proceed

to summarize these �ndings.

2.1. Equi-biaxial loading

Consider the composite la�ice of Fig. 1 and assume that the struts of phase A and phase B

comprise solids of Young’s modulus EA and EB , respectively. �e second moment of area per

unit depth into the page is given by IA = t3A/12 for phase A struts and IB = t3B/12 for phase

B struts. It is shown in Appendix A.1 that the bulk modulus K̄ = Ēxx/2 is given by

K̄

EB t̄3B
=

σ̄

2ε̄xxEB t̄3B
=

4 (1 + 2r)

(8 + 3r) sin2 ω
(6)

where

t̄B =
tB
l
, (7)

and

r =
EAIA
EBIB

. (8)

Upon introducing a reference relative density by taking tA = 0 such that

ρ̄ref = ρ̄ cos2 ω|tA=0 = 2t̄B (9)

the bulk modulus can be re-expressed as

K̄

EBρ̄3ref
=

1 + 2r

2 (8 + 3r) sin2 ω
. (10)
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We note in passing that the overall relative density ρ̄ is closely related to ρ̄ref by

ρ̄ =
(tA/l) + ρref

cos2 ω
(11)

upon making use of Eqs. (4) and (9). �e bulk modulus decreases with increasing inclination ω

and, sincewe have neglected the contribution tomacroscopic compliance from axial stretching

of the bars, we �nd that the bulk modulus is unbounded when ω = 0◦. An increased ratio of

bending sti�ness of the beams of phase A to that of the beams of phase B also increases the

macroscopic bulk modulus.

A comparison of �nite element predictions with Eq. (10) is given in Fig. 4(a) for the choice

ρ̄ref = 10−3. In the FE analysis, there were 3 degrees of freedom at each node: a transverse

de�ection vh, a rotation θh of the cross-section and an axial displacement uh. Hermitian cubic

shape functions were used for interpolation of vh and θh in order to achieve C1 continuity,

whereas linear shape functions were used for uh. �e simulations were performed on a unit

cell of size 2l cosω × 2l cosω with periodic boundary conditions, as shown in Fig. A1(c).

As already mentioned above, the �nite element calculations reveal that the Poisson ratio

ν̄xy vanishes, and also Ēxx = Ēyy. Equi-biaxial stressing on the macroscopic level generates a

state of equi-biaxial straining ε̄xx = ε̄yy = ε̄v, with volumetric strain 2ε̄v, and the bulk modulus

is given by

K̄FE =
σ̄xx + σ̄yy

4ε̄v
. (12)

�e agreement between FE and analysis is excellent over parameter value range of interest.

2.2. Shear loading

�e macroscopic shear modulus Ḡxy is derived in Appendix A.2. We �nd that
Ḡxy

EBρ̄3ref
=

2 + 7r

4 (8 + 3r) cos2 ω
(13)

where ρ̄ref has already been de�ned in Eq. (9). FE-based simulations, using periodic boundary

conditions, were in excellent agreement to the analytical predictions, see Fig. 4(b).

2.3. Macroscopic Swelling of la�ice

�e analytical calculations give closed-form expressions for K̄ and Ḡxy. However, no such

expressions have been derived for themacroscopic strain (ε̄axx, ε̄ayy) in terms of the linear expan-

sion strain ea of phase A. FE calculations were used to determine this relationship, as follows.
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Start with the simplest case such that ω = 0◦ as shown in Fig. 5(a): symmetry dictates that the

macroscopic strain vanishes, ε̄axx = ε̄ayy = 0. For a la�ice of non-vanishing inclination, ω 6= 0,

�nite element simulations are performed on the unit cell in order to deduce the macroscopic

actuation strain due to an imposed actuation strain ea of phase A. �is is done by applying

periodic boundary conditions with an imposed actuation strain ea and vanishing macroscopic

strain ε̄ij . A macroscopic stress (σ̄xx, σ̄yy) is generated, and inversion of the elasticity relation

Eq. (5) provides the macroscopic actuation strain, as expressed by:

ε̄axx
ε̄ayy

 = −

1/Ēxx 0

0 1/Ēxx

σ̄xx
σ̄yy

 . (14)

Linearity of the kinematics dictates that ε̄axx/ea and ε̄ayy/ea are functions of tA/tB , ω and

ρ̄ref . Finite element predictions of the ε̄axx/ea and ε̄ayy/ea versus inclination ω are given in

Fig. 5(b) for the choice ρ̄ref = 0.1. Upon swelling of phase A, the la�ice shrinks macroscop-

ically, with somewhat greater shrinkage in the x direction than in the y direction. �e mag-

nitude of the macroscopic shrinkage in each direction increases with increasing ω, and with

increasing thickness of the actuating bar A relative to that of bar B. However, the magnitude

of macroscopic strain is independent of relative density† and is always less than the actuation

strain of phase A by almost an order of magnitude.

2.4. Mechanical maps

Maps to summarise the mechanical properties of the two-phase la�ice are shown in Fig. 6.

Parts (a) and (b) of Fig. 6 contain maps of bulk and shear modulus maps for ω = 1◦ and ω =

20◦, respectively. �e bulk modulus of the composite la�ice decreases with increasing ω, as

already noted in connection with the explicit formula Eq. (6). In contrast, the shear modulus is

relatively insensitive to the value of ω. We note from Fig. 6(c) that the macroscopic volumetric

strain, due to expansion of phase A, ranges from positive to negative values. However, for the

example shown of ω = 20◦, the la�ice undergoes a volumetric shrinkage when the struts of

phase A expand for almost the full range of geometries as de�ned by the axes of the map.

†It is assumed that the relative density is su�ciently small for inextensional beam theory to apply for both

struts A and B.
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2.5. Mechanical failure due to swelling of actuation material

Mechanical failure of the 2-phase la�ice can result from macroscopic loading or from

swelling of the active material: upon actuation of phase A, the sca�old struts of phase B bend

and may fracture. Consider, by way of example, a la�ice with ω = 0◦, as shown in Fig. 5(a).

When all struts of phase A are actuated, the supporting structure B bends. �e nodes of struc-

ture B remain at their original positions but all rotate by the same angle. �e induced axial

force P in the actuating bar and moment MP in the support structure B are calculated as a

function of the actuation eal as

P =
24EBIB

l2
ea, and (15)

MP =
1

2
Pl =

6EBIB
l

ea. (16)

�e maximum bending stress σmax on the cross-section of bar of phase B can be wri�en in

dimensionless form as

σmax

EBea
= 3t̄B. (17)

Note the linear dependence of σmax upon t̄B for the choice ω = 0◦.

Now consider the case of a non-vanishing inclination angle ω. As discussed above, an an-

alytical solution is not immediately available for the macroscopic actuation strain and thereby

for the induced bending moments in bar of phase B. Finite element simulations are needed to

investigate the relationship between bending stress in la�ice B and the actuation of the struts

A, and this was done as follows. �e maximum tensile stress within la�ice B was determined

for the choices ω = 1◦ and ω = 20◦, with full constraint of the macroscopic strain, ε̄ij = 0.

Contours of σmax/(EBea) in the 2D space of t̄B versus tA/tB are given in Fig. 6(d). �e in-

duced bending stress again scales almost linearly with the thickness t̄B of the la�ice B. Also,

the sensitivity of bending stress to the ratio of bar thicknesses tA/tB increases dramatically

with increasing ω. �e kink in the contour plot for ω = 20◦ is due to a change in the location

of failure within the la�ice: for small tA/tB the maximum bending stress is more likely to

occur at the obtuse angle of the diamond, while for large tA/tB the maximum bending stress

will more likely take place at the acute angle.
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3. Electrical performance of the solid-state battery

3.1. 1D ba�ery model

�e ba�ery under investigation is sketched in Fig. 7(a). It consists of a lithiummetal anode,

a solid-electrolyte thin layer as the separator, a composite cathode and a current collector.

We shall develop a 1D model for the discharge characteristic of a solid-state Li-ion ba�ery

containing the microarchitured composite cathode as shown in Fig. 7(b). Our analysis builds

on themethodology ofMcMeeking and co-workers (Mykhaylov et al., 2019) for a Li-ion ba�ery

with a composite cathode, as shown in Fig. 7(a). First, we consider the case of a conventional

composite cathode, and we then modify the analysis to deal with the micro-architectured

cathode based on the microstructure analysed above.

A�ention is restricted to a 1D model such that all variations are with respect to an X

coordinate, as de�ned in Fig. 7(a), with origin at the interface between the Li anode and the

separator. �e separator (in the form of thin layer of electrolyte) and composite cathode are of

thickness w andW , respectively. During discharge, lithium ions migrate from lithium metal,

through the separator and into active particles of the composite cathode. �e �lling of cathode

particles is spatially non-uniform in X , and occurs within a transition zone of length λ. As

�lling proceeds, the transition zone advances into un�lled cathode material and leaves in its

wake �lled cathode of thicknessWf . �ree parameters dictate the rate of lithium transport: the

lithium concentration C(X, t), ionic electrostatic potential in the solid electrolyte φ(X, t) and

electronic potential in the storage material φs(X, t). We assume that the electrolyte and �lled

composite cathode are electronic insulators, hence φs(X, t) is constant in the �lled portion of

the cathode where the electron current vanishes. �e cell potential φcell equals the potential

di�erence between the electrodes, such that

φcell = φs(w +W, t)− φ(0−, t), (18)

where φ(0−, t) is the potential of the lithium metal over X < 0. We proceed to state the

potentials in di�erent parts of the cell under galvanostatic discharge at a current density i.

1. In the lithium metal (X < 0). Assume that the lithium metal is a perfect conductor with

an electric potential set to zero,

φ(0−, t) = 0. (19)
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2. At the Li|Separator interface (X = 0). Assume a linearized Butler–Volmer reaction at

this interface. De�ne ia0 as the exchange current at the anode side, and αaa and αac as

symmetric coe�cients at the anode|separator interface. Denote the Faraday constant

by F , the Universal gas constant by R and the absolute temperature by T in the usual

manner. �en, the current across the interface is

i = ia0

(
αaaFηa
RT

+
αacFηa
RT

)
(20)

where the overpotential ηa reads

ηa = φ(0−, t)− φ(0+, t)− Ua, (21)

and Ua is the open-circuit equilibrium potential across the Li|Separator. Now write the

interfacial resistance as

Za =
RT

ia0F (αaa + αac)
, (22)

such that Eq. (20) can be rewri�en as

ηa = iZa. (23)

Taking into account Eq. (19), the value of φ at X = 0+ in the separator is

φ(0+, t) = −Ua − iZa. (24)

3. In the separator (0 < X < w). Assume that Ohm’s law governs the Li+ transport, such

that

i = −χ ∂φ
∂X

(25)

where χ is the ionic conductivity of the separator. Integration of Eq. (25) gives immedi-

ately

φ(X, t) = φ(0+, t)− i

χ
X = −Ua − iZa −

i

χ
X. (26)

such that

φ(w, t) = −Ua − iZa −
iw

χ
. (27)

4. In the composite cathode: �lled region (w < X < w+Wf ). Ohm’s law is again assumed

in this region, to give

i = −χc
∂φ

∂X
(28)
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where χc is the ionic conductivity of the composite cathode. �e potential in this region

is thus expressed as

φ(X, t) = −Ua − iZa −
iw

χ
− i

χc
(X − w). (29)

and, at X = w +Wf , we obtain

φ(w +Wf , t) = −Ua − iZa −
iw

χ
− iWf

χc
. (30)

5. In the composite cathode: un�lled region (w+Wf < X < w+W ). �e current i in the

external circuit is the sum of the ionic current in the electrolyte iLi+ and the electronic

current in the active cathode material ie− . �e ionic conductivity χc of solid electrolyte

is taken to be the same as that in the �lled region and the electronic conductivity of

active material is χe. Consequently,

i = iLi+ + ie− (31)

where

iLi+ = −χc
∂φ

∂X
, and (32)

ie− = χe
∂φs
∂X

. (33)

Charge neutrality demands that the ionic �ux into un�lled storage particles equals the

electron �ux into these particles. Consequently, ∂iLi+/∂X equals ∂ie−/∂X . Since i is

constant, integration of Eq. (31) from w +Wf to X yields

φs(X, t) = φs(w +Wf , t) +
χc
χe
φ(w +Wf , t)−

χc
χe
φ(X, t)− i(X − w −Wf )

χe
(34)

Now assume a linearized Butler–Volmer-type reaction at the electrolyte|active particle

interface. De�ne a as the interface area per unit volume of the composite cathode, αca
and αcc as symmetric coe�cients at the electrolyte|cathode particle interface, ia0 as the

exchange current at anode side. �en

∂iLi+

∂X
= −aic0

(
αcaFηc
RT

+
αccFηc
RT

)
, (35)
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where the overpotential is

ηc = φs(X, t)− φ(X, t)− Uc. (36)

Now de�ne

Zc =
RT

ic0F (αca + αcc)
. (37)

�en, upon combining Eqs. (32) and (35), and making use of Eq. (34) a second-order

linear di�erential equation of φ is obtained, of the form

∂2φ

∂X2
+
a (χc + χe)

Zcχcχe
φ =

a

Zcχc

[
φs(w +Wf , t) +

χc
χe
φ(w +Wf , t)−

i(X − w −Wf )

χe
− Uc

]
(38)

At the �lled|un�lled interface (X = w+Wf ), Li+ is the only charge carrier. In contrast,

the cathode|current collector interface (X = w + W ) is impermeable to Li+, thus e– is

the only charge carrier. Hence, the boundary conditions for solution of Eq. (38) are

∂φ

∂X
(w +Wf , t) = − i

χc
, and (39)

∂φ

∂X
(w +W, t) = 0. (40)

�e complementary function φC in the solution of Eq. (38) can be wri�en as

φC(X, t) = A1 cosh
X

λ
+ A2 sinh

X

λ
(41)

while a particular integral φP is

φP (X, t) =
χe

χe + χc

[
φs(w +Wf , t) +

χc
χe
φ(w +Wf , t)−

i(X − w −Wf )

χe
− Uc

]
(42)

where

λ =

√
Zcχeχc

a(χe + χc)
. (43)

Upon de�ning λ0 as

λ0 =

√
Zcχc
a

, (44)

λ is then expressed as

λ =
λ0√

χc/χe + 1
. (45)
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�us, the general solution φ = φC + φP in the un�lled region is

φ(X, t) = A1 cosh
X

λ
+ A2 sinh

X

λ
+

χe
χe + χc

[
φs(w +Wf , t) +

χc
χe
φ(w +Wf , t)

−i(X − w −Wf )

χe
− Uc

]
.

(46)

Now make use of boundary conditions Eqs. (39) and (40) to eliminate A1 and A2, using

Eq. (30) to obtain

φ(X, t) =− Ua − iZa −
iw

χ
− iWf

χc
− i(X − w −Wf )

χe + χc

+
iλ

(χe + χc) sinh
W−Wf

λ

(
cosh

X − w −Wf

λ
+
χe
χc

cosh
X − w −W

λ

−1− χe
χc

cosh
W −Wf

λ

)
. (47)

Likewise, φs is obtained by substituting Eq. (47) into Eq. (34) to get

φs(X, t) = Uc − Ua − iZa −
iw

χ
− iWf

χc
− i(X − w −Wf )

χe + χc

− iλ

(χe + χc) sinh
W−Wf

λ

(
χc
χe

cosh
X − w −Wf

λ
+ cosh

X − w −W
λ

+1 +
χe
χc

cosh
W −Wf

λ

)
(48)

It is convenient to introduce the normalized values

X̄ =
X − w −Wf

λ
, W̄ =

W −Wf

λ
, χ̄c =

χc
χe
, (49)

such that the current carried by Li-ion can be expressed as

iLi+

i
=

χ̄c
1 + χ̄c

− χ̄c
(1 + χ̄c) sinh W̄

[
sinh X̄ +

1

χ̄c
sinh

(
X̄ − W̄

)]
. (50)

�e ionic conductivity of solid electrolyte is typically on the order of 10−3 S cm−1, as listed in

Table 1. We take χ = 2× 10−3 S cm−1 for the pure solid electrolyte and χc = 2× 10−4 S cm−1

for the composite cathode. As for the electronic conductivity χe, as shown in Table 2, cath-

ode materials have poor electronic conductivity (10−4 S cm−1 or lower), but the addition of

conductive agents (such as graphite powder) will greatly increase the electronic conductiv-

ity of the composite cathode. �e currents Li+ and e– are plo�ed in Fig. 7(c) for the choice
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χc/χe = 0.1. It shows that lithium insertion is con�ned to a small region. In this calcula-

tion, we have taken the dimensions of the ba�ery cell to be w = 10 µm and W = 100 µm.

�e characteristic length scale is λ0 = 1 µm. �e imposed constant current density i is set at

2 mA cm−2.

If we takeZa = 30 Ωcm2, Ua = 1.2 V andUc = 4.4 V, together with the values of other pa-

rameters given earlier in this section, we can plot the potential distributions shown in Fig. 7(d).

Now proceed to obtain the internal resistance of the ba�ery cell. �e cell potential is the po-

tential di�erence of φs at two ends

φcell = Uc−Ua−iZa−
iw

χ
−iWf

χc
−i(W −Wf )

χe + χc
− iλ

(χe + χc) sinh
W−Wf

λ

[
2 +

(
χe
χc

+
χc
χe

)
cosh

W −Wf

λ

]
.

(51)

Now re-write the cell potential in the form

φcell = Uc − Ua − iRint. (52)

whereRint is the internal resistance of the cell. �en, upon comparing Eq. (51) and Eq. (52) we

obtain

Rint = Za +
w

χ
+
Wf

χc
+
W −Wf

χe + χc
+

λ

(χe + χc) sinh
W−Wf

λ

[
2 +

(
χe
χc

+
χc
χe

)
cosh

W −Wf

λ

]
.

(53)

In Eq. (53), the width of �lled region Wf is time-dependent. During galvanostatic discharge

(that is, at constant current),Wf increases at a constant rate such that

Wf (t) =
t

T
W =

it

Q
W (54)

where Q is the coulombic capacity of the cathode, and T is the total time to �ll the cathode

with Li+. �e addition of conductive agents alters the ratio χc/χe while keeping χc constant:

an increase in the electronic conductivity reduces the internal resistance of the ba�ery cell,

but the improvement is minor when χc/χe < 0.1.

For extreme cases as 0 < χc/χe << 1 and 0 < λ/w << 1, the internal resistance can be

simpli�ed to

Rint = Za +
w

χ
+
Wf

χc
+

λ

χc
. (55)

�e four terms represent resistances at the anode|separator interface, in the separator, in the

�lled region of composite cathode and inside the �lling region of the cathode. �ere is no
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contribution to internal resistance from the un�lled region, as the electronic resistance is neg-

ligible. �e output power is

P = iφcell. (56)

3.2. Application of the model to the micro-architectured composite cathode

In this section, we consider the cathode design shown in Fig. 7(b), where the cathode has a

micro-architectured structure. �e solid electrolyte provides both the sca�old and ionic path-

ways for phase B material of the composite cathode, and active storage material is embedded

inside the sca�old as phase A. Similar to the conventional design, lithium ions �ll the com-

posite cathode progressively one row of cell at a time, with the f -th row being �lled at the

current time in Fig. 7(b). As for the conventional cathode of Fig. 7(a), lithium ions are the only

charge carrier within the separator and �lled region of cathode material; within the un�lled

region of cathode, electrons are the only charge carrier; and, within the narrow region, where

lithium ions are inserted into the active particles, current is carried by both Li-ions and elec-

trons. �e corresponding electrostatic potential in the ion-conducting pathway φ and in the

electron-conducting pathway φs are depicted in Fig. 7(d).

We emphasise that cathode storage material is constrained within the composite mixture

of phase A and the solid electrolyte support framework is phase B. �e corresponding volume

fractions are expressed in Eqs. (1) to (3). Denote the volume fraction of active material within

phase A by f 0
AM ; the volume fraction of binder, electronic conductor and electrolyte within

phase A is (1− f 0
AM). �e active material volume fraction fAM within the composite cathode

is

fAM = fAf
0
AM . (57)

�e e�ective internal resistance of the composite cathode structure would require detailed

numerical simulation to account for the actual Li+ pathways. A simpler calculation of the

internal resistance su�ces for our purposes by considering a simpli�ed version as sketched

in Fig. 8(a). �e solid electrolyte sca�old (phase B) is straightened and aligned with the active

storage material (phase A). �is simpli�ed geometry is slightly less tortuous than the actual

structure and thereby possesses a slightly smaller internal resistance, but the discrepancy is

within a reasonable tolerance for the broad assessment of the present study. An analytical
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treatment of this replacement structure is straightforward, and this structure thereby serves

as a good starting point for the estimation of internal resistance.

Assume that, at any time t, lithium �lls up to the f -th row of the structure, as shown in

Fig. 7(b). Divide the cathode into three parts: �lled cells (0 < X < W
(f−1)
f ), a �lling row of

cells (W (f−1)
f < X < W

(f)
f ) and un�lled cells (W (f)

f < X < W ).

�e distance of a k-th cell from the separatorW (k)
f is

W
(k)
f = k(l + tB) =

kWH

n
(58)

whereWH is the total width and n is the total number of unit cells in the direction X in the

micro-architectured structure. Denote the total coulombic capacity as Q and applied current

density as i. �en the total discharge time T

T =
Q

i
, (59)

and the time to �ll one row ∆T can be estimated from

∆T =
T

n
=
Q

in
. (60)

�e f -th row is being �lled at time t in the range (f − 1)∆T < t < f∆T . During this period,

Li-ions migrate in the solid electrolyte sca�old and within the �lled region (0 < X < W
(f−1)
f )

of the cathode, see Fig. 8(a). We proceed by adopting the model of the previous section for

the �lling of each cell. Denote the conductivity of the electrolyte sca�old as χH and cathode

struts as χHc ; then, the internal resistance of this micro-architectured structure is

RH
int = Za +

w

χ
+

W
(f−1)
f

χH + χHc
+
wf
χHc

+
λ

χHc
when (f − 1)∆T < t < f∆T. (61)

Note that at each time step t = f∆T , the internal resistance is discontinuous. �e le�- and

right-hand limits are expressed as

RH−
int (f∆T ) = Za +

w

χ
+

W
(f−1)
f

χH + χHc
+

l

χHc
+

λ

χHc
, (62)

RH+
int (f∆T ) = Za +

w

χ
+

W
(f)
f

χH + χHc
+

λ

χHc
. (63)

In the limit of n→∞, the internal resistance becomes a linear function of time t

RH
int(t) = Za +

w

χ
+

WH

χH + χHc

t

T
+

λ

χHc
. (64)
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As an example, Fig. 8(b) shows the internal resistance of the whole cell for selected values of

unit cell n, with the overall length of the cell held �xed. For each unit cell, we take tB/l = 0.1,

tA/tB = 5, and the volume fraction of active material in the composite strut f 0
AM = 0.7; then,

the volume fraction of active material in the structure is fAM = 0.35. We note from Fig. 8(b)

that, as the length of unit cell is decreased, the internal resistance decreases. �e resistance at

n =∞ is the lowest achievable value.

It is instructive to compare the electrical performance of this micro-architectured cathode

with that of the conventional composite cathode as detailed in the previous section. Assume

that the micro-architectured cathode can achieve the same coulombic capacity Q, and dis-

charges at the same current density i, as the conventional cathode. �en, we can compare the

resistance evolution of the two cathodes during lithiation. �e same coulombic capacity indi-

cates that the content of active materials will be the same for the micro-architectured structure

and the conventional cathode. Consequently,

f 0
AMW = WHfAM (65)

if we assume the height and thickness of the two structures to be the same. Upon recalling

Eq. (57), we obtain a relation between the two widths,

W = fAW
H. (66)

�en, according to Eq. (59), the total discharge time will be the same for the two structures.

Since both solid electrolyte and cathode struts in the micro-architectured design are straight,

their conductivities can be expressed as

χH = χfB, χHc = χcfA. (67)

A representative time t = T/2 is chosen for the time at which a comparison is made of the

resistance of the two structures. �e resulting relative resistance is

Rrel
int =

RH
int(T/2)

Rint(T/2)
=
Za + wχ−1 +WH

[
2
(
χH + χHc

)]−1
+ λ

(
χHc
)−1

Za + wχ−1 +W (2χc)
−1 + λχ−1c

, (68)

and, upon combining Eqs. (66) to (68), we �nd

Rrel
int =

RH
int(T/2)

Rint(T/2)
=
Za + wχ−1 +W [2fA (χfB + χcfA)]−1 + λ (χcfA)−1

Za + wχ−1 +W (2χc)
−1 + λχ−1c

. (69)
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�e map of relative resistance is shown in Fig. 8(c). In general, the internal resistance of the

la�ice cathode exceeds that of the composite cathode (Rrel
int > 1), especially when both volume

fractions of electrolyte and cathode material are small.

3.3. Design map for a micro-architectured composite cathode

It is instructive to construct a design map for the micro-architectured composite cathode

by plo�ing electrical andmechanical performance parameters using axes of (t̄B, t̄A/t̄B). Based

on Figs. 3(b), 6(b-d) and 8(c), we construct a design map in Fig. 9 for the choice ω = 20◦. �e

performance of the la�ice-cathode can be quanti�ed as a function of (t̄B, tA/tB), as sketched

in Fig. 9(a). �e porosity limit of fair → 0 is included on the map, by making use of Eq. (3). In

particular, for the choice ω = 20◦, Eq. (3) reduces to

1− t̄B
cos2 20◦

(
tA
tB

+ 2

)
= 0. (70)

Boundaries of the performance map

We proceed to quantify the performance map in Fig. 9(b) by adding two boundaries, and

three sets of contours of performance. Possible operating regimes of the map are thereby

identi�ed. Wemake use of the same axes as in Fig. 9(a), and again takeω = 20◦, withEA = EB .

(i) �e la�ice-cathode is only viable when the level of stress in beams of phase B are less than

an allowable bending strength σmax. Assume that the la�ice is fully constrained such that

the macroscopic strain vanishes. �en, the locus of geometries for which σmax/(EBea) =

0.6 is taken from Fig. 6(d) and added to Fig. 9(b). We take this as a failure locus for the

beams of phase B.

(ii) A second boundary is identi�ed by recognising that a low value of t̄B and of tA/tB
gives an unacceptably high value of internal resistance Rint. Take, as a arbitrary value,

Rrel
int = 2 for this boundary. �en, the boundary locus is obtained directly from Eq. (69)

for the choice Za = 30 Ω cm2, w = 10 µm, W = 100 µm, χ = 2× 10−3 S cm−1,

χc = 2× 10−4 S cm−1, λ = 1 µm, and the volume fractions of A and B from Eqs. (1)

and (2).

Performance contours on the map
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Weproceed to add 3 sets of contours for cathode properties: the volume fraction of phase A,

the macroscopic volumetric strain associated with lithiation of storage particles within phase

A, and the macroscopic bulk modulus K̄ of the la�ice.

(i) Contours of volume fraction fA of phase A are shown for ω = 20◦ by direct exploitation

of Eq. (1), rewri�en in the form

fA =
1

cos2 20◦
tA
tB
t̄B. (71)

(ii) �e macroscopic volumetric expansion of the composite la�ice is shown by contours of

(ε̄xx + ε̄yy)/ea, where ea is the linear expansion of phase A associated with lithiation.

�ese contours are obtained by FE calculation.

(iii) Contours of bulk modulus K̄/EB are added to the map by direct exploitation of Eq. (10).

It is clear from Fig. 9(b) that, to achieve high storage capacity and low electrical resistance,

it is desirable for the porosity fair to be minimized and the cathode volume fraction fA should

be maximised. However, this also indicates a potential mechanical failure due to the fracture

of solid electrolyte sca�old, as well as an increased sti�ness. In contrast, a low macroscopic

modulus and small degree of macroscopic swelling is achieved for a small volume fraction of

active material. �e optimal operating point in the map depends upon the material properties

of cathode material and electrolyte, and with overall performance considerations.

�e present analysis assumes that fracture of the la�ice is dictated by �exure of the struts.

�e analysis is linear and neglects the possibility of elastic, or elastic-plastic buckling. Bhan-

dakkar and Johnson (2012) have considered the buckling of a perfect hexagonal honeycomb

due to lithiation and show that buckling limits the stress level within the la�ice; prior to buck-

ling their la�ice is stretching-governed under an in-plane equi-biaxial compressive stress, and

so strut failure by bending is not a consideration for them. In contrast, the struts of the present

topology bend upon lithiation due to the �nite inclination angle ω. Consequently, buckling is

not relevant to the topology of the present study unless the struts are extremely slender. Such

non-linearities are beyond the scope of the present study.
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4. Concluding remarks

In this study, a two-phase 2D la�ice material is identi�ed that possesses both a highmacro-

scopic compliance and a lowmacroscopic coe�cient of thermal expansion. �e e�ective prop-

erties of the la�ice are analysed both analytically and by �nite element simulation. �e po-

tential of this la�ice structure for use as the cathode of solid-state Li-ion ba�ery is explored.

To do so, the phase A contains active storage material whereas phase B comprises the solid

electrolyte. �us, the 2-phase structure can alleviate the stresses induced by swelling of the

cathode storage material. �e targeted active materials are those with extremely high energy

density and power density, but currently cannot be used as electrode material because of a

high lithiation strain and low mechanical strength. We present a design map that illustrates

the competition between mechanical failure and cathode performance, and serves as a tool to

aid the optimal topological design of composite cathodes. �e 2D la�ice of the present study

can be considered to be a prismatic la�ice in 3 dimensions. Fully 3D la�ices ca also be invented

but it will be a major challenge to manufacture them.
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Figure 1: �e geometry of two-phase la�ice structure. (a) Leading dimensions of a representative 2D unit cell.
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Figure 3: Geometry of (a) ω = 0◦ and (b) ω = 20◦ composite cathodes, where t̄B = tB/l. �e maps show
contours of volume fraction fA of phase A, fB of phase B and porosity fair .
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Figure 6: Mechanical maps. Macroscopic bulk and shear moduli for (a) ω = 1◦ and (b) ω = 20◦. Although
the inclination angle ω has great in�uence on the bulk modulus, it has li�le in�uence on the shear modulus. (c)
Normalized macroscopic volumetric strain (ε̄axx + ε̄ayy)/ea for a ω = 20◦ la�ice. By adjusting the thicknesses of
strut A and B, the structure can achieve positive, negative and zero thermal expansion coe�cient. (d) Normalized
maximum local struts σmax/(EBea) for ω = 1◦ and ω = 20◦ la�ices.
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Appendix A. Analysis of macroscopic modulus

Analytical expressions for the macroscopic elastic moduli of the composite la�ice are ob-

tained by considering equi-biaxial loading to obtain the bulk modulus K̄ , and then shear load-

ing to determine the shear modulus Ḡxy.

Appendix A.1. Equi-biaxial loading

Assume equi-biaxial loading of magnitude (σ̄xx = σ̄yy = σ̄, σ̄xy = 0) in the x-y reference

frame. Note that lines passing through the centres of the diamonds are at 45◦ to the x and

y axes in Fig. A1(a). Write these two rotated directions as x′ and y′. For later analysis, it is

convenient to de�ne a representative unit cell in this rotated co-ordinate system (Fig. A1(b)),

containing a complete diamond surrounded by four squares (S1, S2, S3, S4), shown as shaded

in the �gure.

Now rotate axes to the new x′- y′ coordinate system, as shown in Fig. A2. Rotational

symmetry dictates that the moments at the mid points of the beams in the squares/diamonds

are zero. Application of rotation symmetry and glide re�ection symmetry further reduces the

number of unknown forces and moments to (F ,M , T , P ,W ), as shown in Fig. A2(b).

Now apply the method of sections to relate the macroscopic hydrostatic loading to the

microscopic force distribution of the struts, compare Fig. A2(a) and (b). Force equilibrium

demands:

2F + P
(

cos
(π

4
− ω

)
+ sin

(π
4
− ω

))
+W

(
cos
(π

4
− ω

)
− sin

(π
4
− ω

))
= 2
√

2σ̄l cosω

(A.1)

2T + P
(

cos
(π

4
− ω

)
+ sin

(π
4
− ω

))
+W

(
cos
(π

4
− ω

)
− sin

(π
4
− ω

))
= 0 (A.2)

Additionally, if we consider only one square S2, as shown in Fig. A2(c), moment balance

about the point PC demands that

−
√

2Fl sinω − 2M +Wl cosω cosω − Pl cosω sinω = 0 (A.3)

Eqs. (A.1) to (A.3) can be solved to give

F = − 1√
2
P cosω − 1√

2
W sinω +

√
2σ̄l cosω (A.4)
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T = − 1√
2
P cosω − 1√

2
W sinω (A.5)

M

l
=

1

2
W − σ̄l cosω sinω (A.6)

�e remaining unknowns are P andW , and we need to consider compatibility in order to

proceed. Due to symmetry, we can consider only one square S2 as representative of the four

squares in Fig. A2(a) . Cut the structure at P4, PC and P2 as shown in Fig. A3. By so-doing,

we introduce eight unknown forces/moments in addition to P and W : (T1, T2, M1) at P4 in

Beam P1P4, the unknowns (T5, T6,M2) at P4 in Beam P3P4, and the unknowns (T3, T4) at PC .

�e moment vanishes at PC due to symmetry, as shown in Fig. A3. Equilibrium provides the

following 5 relations:

T3 = 2T2 −W + σ̄l sin 2ω (A.7)

T4 = 2T1 + P − 2σ̄l cos2 ω (A.8)

T5 = −T2 + F sin
(π

4
− ω

)
− T cos

(π
4
− ω

)
(A.9)

T6 = −T1 + F cos
(π

4
− ω

)
+ T sin

(π
4
− ω

)
(A.10)

M2 = M1 −M (A.11)

and so �ve more equations are needed in order to solve for the remaining unknowns (P ,W ,

T1, T2,M1). Symmetry and continuity provide the following 4 relations:

θP1 =
l2

EBIB
×
[

1

8
(P cos 2ω +W sin 2ω) +

1

4
W +

1

2

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
−M
l
− 1

2
T3 − 0 · T4 −

1

2
T1 + T2 −

M1

l

]
= 0 (A.12)

θP3 =
l2

EBIB
×
[
−1

4
T4 +

1

8
T3 − T6 +

1

2
T5 +

M2

l
+

1

2

(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
−M
l
− 1

2
(−P sin 2ω +W cos 2ω) +

1

2
(P cos 2ω +W sin 2ω) +

1

2
W

]
= 0 (A.13)

uPC1x′′ − uPC2x′′ =
l3

EBIB
×
[
− 1

24
(P cos 2ω +W sin 2ω)− 1

16
W

− 1

12

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
+ 0 · M

l

− 1

16
T3 −

(
5

24
+

1

24r

)
T4 +

1

12
T1 +

3

16
T2 −

M1

4l

]
− l3

EBIB
×
[(

1

8
+

1

24r

)
T4 −

1

16
T3 +

1

4
T6 −

3

16
T5 −

M2

8l
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− 3

16

(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
+
M

4l
− 1

8
(−P sin 2ω +W cos 2ω)− 3

16
(P cos 2ω +W sin 2ω)− 1

4
W

]
= 0 (A.14)

uPC1y′′ − uPC2y′′ =
l3

EBIB
×
[

1

16
(P cos 2ω +W sin 2ω) +

1

8
W

+
1

4

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
(A.15)

−M
2l
− 7

24
T3 −

1

16
T4 −

1

4
T1 +

29

48
T2 −

5M1

8l

]
− l3

EBIB
×
[
− 1

16
T4 +

1

24
T3 −

1

8
T6 +

5

48
T5 +

M2

8l

+
5

48

(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
− M

8l

− 1

16
(−P sin 2ω +W cos 2ω) +

5

48
(P cos 2ω +W sin 2ω) +

1

16
W

]
= 0 (A.16)

where

r =
EAIA
EBIB

. (A.17)

In the above equations we have introduced a third coordinate system x′′- y′′, which is rotated

by (π/4 + ω) with respect to x′- y′. Compatibility also demands that, for equi-biaxial loading,

uPC4x − uPC3x = ε̄xyl = 0. (A.18)

where the points PC3 and PC4 have already been de�ned in the original coordinate system x-y

in Fig. A1(a). Upon rewriting Eq. (A.18) in the x′′- y′′ system we have

(uPC3x′′ − uPC4x′′) sinω + (uPC3y′′ − uPC4y′′) cosω =
l3

EBIB
[A1 − A2 + A3 − A4] (A.19)

where

A1 =

[
(P sin 2ω −W cos 2ω)

(
1

16
cos 2ω +

(
1

8
+

1

48r
sin 4ω

))
+ (P cos 2ω +W sin 2ω)

(
− 1

24
− 1

8
sin 2ω −

(
1

8
+

1

24r

)
sin2 2ω

)
−
(

5

48
+

3

16
sin 2ω

)(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
+

(
1

8
+

1

4
sin 2ω

)
M

l
+

(
1

16
+

1

8
sin 2ω

)
T3 −

(
1

24
+

1

16
sin 2ω

)
T4

+

(
5

48
+

3

16
sin 2ω

)
T1 −

(
1

8
+

1

4
sin 2ω

)
T2
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+

(
1

8
+

1

4
sin 2ω

)
M1

l

]
sinω (A.20)

A2 =

[(
1

8
− 1

8
sin 2ω

)
T4 +

(
− 1

16
+

1

16
sin 2ω

)
T3 +

(
29

48
− 11

16
sin 2ω

)
T6

+

(
−1

4
+

1

4
sin 2ω

)
T5 +

(
−5

8
+

3

4
sin 2ω

)
M2

l

+

(
−1

4
+

1

4
sin 2ω

)(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
+

(
1

2
− 1

2
sin 2ω

)
M

l

+ (P cos 2ω +W sin 2ω)

(
7

24
− 5

8
sin 2ω +

(
3

8
+

1

24r

)
sin2 2ω

)
+ (P sin 2ω −W cos 2ω)

(
1

4
+

5

16
cos 2ω − 1

4
sin 2ω − (

3

16
+

1

48r
) sin 4ω

)]
sinω

(A.21)

A3 =

[
(P sin 2ω −W cos 2ω)

(
1

8
+

1

24r
cos2 2ω

)
+ (P cos 2ω +W sin 2ω)

(
−1

6
cos 2ω −

(
1

8
+

1

24r

)
sin 2ω cos 2ω

)
− 3

16
cos 2ω

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
+

1

4

M

l
cos 2ω +

1

8
T3 cos 2ω

− 1

16
T4 cos 2ω +

3

16
T1 cos 2ω − 1

4
T2 cos 2ω +

1

4

M1

l
cos 2ω

]
cosω (A.22)

A4 =

[(
− 3

16
− 1

8
cos 2ω

)
T4 +

(
5

48
+

1

16
cos 2ω

)
T3 +

(
−1

2
− 11

16
cos 2ω

)
T6

+

(
1

3
+

1

4
cos 2ω

)
T5 +

(
1

2
+

3

4
cos 2ω

)
M2

l

+

(
1

3
+

1

4
cos 2ω

)(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
+

(
−1

2
− 1

2
cos 2ω

)
M

l

+ (P cos 2ω +W sin 2ω)

(
−1

4
+

1

4
sin 2ω − 5

16
cos 2ω +

(
3

16
+

1

48r

)
sin 4ω

)
+ (P sin 2ω −W cos 2ω)

(
−1

3
− 1

2
cos 2ω − (

3

8
+

1

24r
) cos2 2ω

)]
cosω (A.23)

Combining Eqs. (A.7) to (A.14), (A.16) and (A.19), the 5 reduced equations in the unknowns

(P ,W , T1, T2,M1) are

− 4T1 − 8
M1

l
+
(
2 sin2 ω − 3

)
P + (2− sin 2ω)W +

(
2
√

2 cos
(

2ω +
π

4

)
+ 2
)
σ̄l = 0,

(A.24)

4T1 − 2T2 + 8
M1

l
+ 2P −W + (sin 2ω − 2 cos 2ω − 2) σ̄l = 0, (A.25)
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(
−8

r
− 16

)
T1 +

(
−4

r
− 8

)
P +

(
4

r
cos 2ω +

4

r
− sin 2ω + 8 cos 2ω + 8

)
σ̄l = 0,

(A.26)

− 18T1 + 2T2 − 36
M1

l
+ (−3 cos 2ω − 9)P + (−3 sin 2ω + 8)W

+ (−8 sin 2ω + 9 cos 2ω + 9) σ̄l = 0, (A.27)

(−9 sinω + 12 cosω)T1 + (3 sinω − 6 cosω)T2 + (−18 sinω + 24 cosω)
M1

l(
sin3 ω − 5 sinω + 6 cosω

)
P +

(
2

r
cosω + 3 sinω + cos3 ω

)
W

+
(
5 sin 2ω cosω − 6 cos3 ω − 6 cosω

)
σ̄l = 0. (A.28)

Upon solving these �ve equations we obtain the explicit formulae:

P = − 5rσ̄l

4 (1 + 2r)
tan 2ω sin 2ω, (A.29)

W =
5rσ̄l

4 (1 + 2r)
sin 2ω, (A.30)

T1 =
σ̄lr sin 2ω

8(1 + 2r)
(5 tan 2ω − 1) + σ̄l cos2 ω, (A.31)

T2 = − σ̄l (4 + 3r) sin 2ω

8(1 + 2r)
, (A.32)

M1

l
= − 2 + r

8(1 + 2r)
σ̄l sin 2ω. (A.33)

All other forces and moments follow immediately by back-substitution.

In order to obtain the macroscopic strain, we consider the unit cell from the original la�ice

as shown in Fig. A4. �e non-vanishing strain components in the x-y coordinate system are

ε̄xx =
uP5x − uP1x

2l cosω
, (A.34)

ε̄yy =
uP9y − uP1y

2l cosω
. (A.35)

and, upon making use of gliding re�ection symmetry for points in S2, the strain components

read

ε̄xx =
1

2l cosω
(uP5x − uP2x + uP2x − uP1x) =

1

l cosω
(uP2x − uP1x) , (A.36)

ε̄yy =
1

2l cosω
(uP9y − uP4y + uP4y − uP1y) =

1

l cosω
(uP4y − uP1y) (A.37)
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When P2 is �xed, we have uP2x = uP2y = 0, and the displacements in Eqs. (A.36) and (A.37)

in the x′′- y′′ coordinate system are

uP1x =− uP1x′′ sinω − uP1y′′ cosω = −uP1x′′ sinω (A.38)

uP1y =uP1x′′ cosω − uP1y′′ sinω = uP1x′′ cosω (A.39)

uP4y =uP4x′′ cosω − uP4y′′ sinω = uP1x′′ cosω − uP4y′′ sinω (A.40)

Consequently,

ε̄xx =
uP1x′′ tanω

l
, (A.41)

ε̄yy = −uP4y′′ tanω

l
. (A.42)

Now, the displacements in the x′′- y′′ coordinate system are

uP1x′′ =
l3

EBIB

[
− 5

48
(P cos 2ω +W sin 2ω)− 3

16
W − 1

3

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
+
M

2l
+

1

4
T3 −

1

12
T4 +

1

3
T1 −

1

2
T2 +

M1

2l

]
=

(8 + 3r) sin 2ω

192(1 + 2r)

σ̄l4

EBIB
, (A.43)

uP4y′′ =
l3

EBIB

[
1

8
(P cos 2ω +W sin 2ω) +

1

4
W +

1

2

(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
−M
l
− 29

48
T3 −

3

16
T4 −

1

2
T1 +

4

3
T2 −

3M1

2l

]
= −(8 + 3r) sin 2ω

192(1 + 2r)

σ̄l4

EBIB
. (A.44)

Consequently, both macroscopic strain components are given by the simple, explicit formula

ε̄xx = ε̄yy =
(8 + 3r) sin2 ω

96 (1 + 2r)

σ̄l3

EBIB
. (A.45)

�e bulk modulus follows as

K̄

EB t̄3B
=

σ̄

2ε̄xxEB t̄3B
=

4 (1 + 2r)

(8 + 3r) sin2 ω
(A.46)

where

t̄B =
tB
l
. (A.47)

Now make use of the relative density of the structure as de�ned by

ρ̄ =
2tB + tA
l cos2 ω

(A.48)

and introduce the reference relative density

ρ̄ref = ρ̄ cos2 ω|tA=0 = 2t̄B. (A.49)
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�e bulk modulus can then be wri�en as

K̄

EBρ̄3ref
=

1 + 2r

2 (8 + 3r) sin2 ω
. (A.50)

Appendix A.2. Shear loading

Under shear loading, the stress state in the x-y plane is expressed as (σ̄xx = σ̄yy = 0,

σ̄xy = τ̄ ) or, under transformation to the x′- y′ coordinate system, as (σ̄′xx = τ̄ , σ̄′yy = −τ̄ ,

σ̄′xy = 0).

We proceed by making use of the symmetry of the structure as shown in Fig. A5(a,b).

Re�ection about the y′ = x′ axis of Fig. A5(a), generates the same structure, but the loading

condition reverses and all reaction forces/moments alternate in sign. We make use of this fact

and identify the �ve unknowns (F , M , T , P , W ), as shown in Fig. A2(c), with M = 0 by

symmetry. A similar analysis to the equi-biaxial loading case provides:

F = −
√

2

2
P sinω +

√
2

2
W cosω +

√
2τ̄ l cosω (A.51)

T =

√
2

2
P sinω −

√
2

2
W cosω (A.52)

Now introduce the same cut as in the case of equi-biaxial loading, as shown in Fig. A6.

Equilibrium demands:

T3 = 2T2 +W + 2τ̄ l cos2 ω (A.53)

T4 = 2T1 − P + τ̄ l sin 2ω (A.54)

T5 = −T2 + P sinω cosω −W cos2 ω −
√

2τ̄ l cosω sin
(π

4
− ω

)
(A.55)

T6 = T1 + P sin2 ω −W cosω sinω −
√

2τ̄ l cosω cos
(π

4
− ω

)
(A.56)

M2 = M1 (A.57)

�us �ve unknowns (P , W , T1, T2, M1) remain. Based on symmetry and continuation

condition, we have four equations that are independent:

θP1 = 0 (A.58)

θP3 = 0 (A.59)

uPC1x′′ − uPC2x′′ = 0 (A.60)
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uPC1y′′ − uPC2y′′ = 0 (A.61)

�ese four equations are identical to Eqs. (A.12) to (A.14) and (A.16). �e ��h equation is

expressed as

uPC4y − uPC3y = 0. (A.62)

In the x′′- y′′ coordinate system, this equation leads to

− (uPC3x′′ − uPC4x′′) cosω + (uPC3y′′ − uPC4y′′) sinω

=
l3

EBIB
[−B1 +B2 +B3 −B4] (A.63)

where

B1 =

[
(P sin 2ω −W cos 2ω)

(
1

16
cos 2ω +

(
1

8
+

1

48r
sin 4ω

))
+ (P cos 2ω +W sin 2ω)

(
− 1

24
− 1

8
sin 2ω −

(
1

8
+

1

24r

)
sin2 2ω

)
−
(

5

48
+

3

16
sin 2ω

)(
F sin

(π
4
− ω

)
+ T cos

(π
4
− ω

))
+

(
1

8
+

1

4
sin 2ω

)
M

l
+

(
1

16
+

1

8
sin 2ω

)
T3 −

(
1

24
+

1

16
sin 2ω

)
T4

+

(
5

48
+

3

16
sin 2ω

)
T1 −

(
1

8
+

1

4
sin 2ω

)
T2

+

(
1

8
+

1

4
sin 2ω

)
M1

l

]
cosω (A.64)

B2 =

[(
1

8
− 1

8
sin 2ω

)
T4 +

(
− 1

16
+

1

16
sin 2ω

)
T3

+

(
29

48
− 11

16
sin 2ω

)
T6 +

(
−1

4
+
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(A.65)

B3 =

[
(P sin 2ω −W cos 2ω)

(
1
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1
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(
1
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1
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)
sin 2ω cos 2ω

)
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B4 =

[(
− 3

16
− 1

8
cos 2ω

)
T4 +

(
5

48
+

1

16
cos 2ω

)
T3 +

(
−1

2
− 11

16
cos 2ω

)
T6

+

(
1

3
+

1

4
cos 2ω

)
T5 +

(
1

2
+

3

4
cos 2ω

)
M2

l

+

(
1

3
+

1

4
cos 2ω

)(
T sin

(π
4
− ω

)
− F cos

(π
4
− ω

))
+

(
−1

2
− 1

2
cos 2ω

)
M

l

+ (P cos 2ω +W sin 2ω)

(
−1

4
+

1

4
sin 2ω − 5

16
cos 2ω +

(
3

16
+

1

48r

)
sin 4ω

)
+ (P sin 2ω −W cos 2ω)

(
−1

3
− 1

2
cos 2ω − (

3

8
+

1

24r
) cos2 2ω

)]
sinω (A.67)

Now rearrange the �ve equations and take into account Eqs. (A.53) to (A.57), to obtain a re-

duced set of 5 relations

− 4T1 − 8
M1

l
+
(
2 sin2 ω + 1

)
P + (−2− sin 2ω)W +

(
−2
√

2 sin
(

2ω +
π

4

)
− 2
)
τ̄ l = 0,

(A.68)

4T1 − 2T2 + 8
M1

l
− 2P +W + (2 sin 2ω + cos 2ω + 1) τ̄ l = 0, (A.69)(
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2
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+ 4
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sin 2ω − 4 sin 2ω − 5 cos2 ω
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P + (−3 sinω cosω − 4)W
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(
−9 sinω cosω − 8 cos2 ω
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(6 sinω − 9 cosω)T1 + 3 cosωT2 − 18 cosω
M1

l
+
(
sin2 ω cosω − 3 sinω + 4 cosω

)
P

+

(
2

r
sinω − sinω cos2 ω + 4 sinω − 3 cosω
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W + (−6 cos 2ω cosω − 2 sin 2ω cosω) τ̄ l = 0.

(A.72)

Upon solving these �ve equations we obtain

P = −W tan 2ω, (A.73)

W = − 5r

2 + 7r
τ̄ l cos2 ω, (A.74)

T1 =
1

2
P − 1

2

(
5r cos2 ω

2 + 7r
− sin 2ω

)
τ̄ l, (A.75)
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T2 = − 4 + 9r

2(2 + 7r)
τ̄ l cos2 ω, (A.76)

M1

l
= − 1 + r

2 + 7r
τ̄ l cos2 ω. (A.77)

(A.78)

As the case of equi-biaxial loading, the strain components in the x-y coordinate system is

expressed as (ε̄xx = ε̄yy = 0)

ε̄xy =
uP5y − uP1y

2l cosω
=

1

l cosω
(uP2y − uP1y) , and (A.79)

ε̄yx = ε̄xy =
uP9x − uP1x

2l cosω
=

1

l cosω
(uP4x − uP1x) (A.80)

If we �x P2 so that uP2x = uP2y = 0, we obtain

ε̄xy =
1

l cosω
(uP2y − uP1y) = −uP1x′′

l
, and (A.81)

ε̄yx =
1

l cosω
(uP4x − uP1x) = −uP4y′′

l
. (A.82)

�e displacements in the x′′- y′′ coordinate system are
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l3
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which reduce to

uP1x′′ = uP4y′′ = −(8 + 3r) cos2 ω

48(2 + 7r)

τ̄ l4

EBIB
. (A.85)

upon eliminating (P,W,F, T,M). �e shear strains are then

ε̄xy = ε̄yx =
(8 + 3r) cos2 ω

48 (2 + 7r)

τ̄ l3

EBIB
(A.86)

�e macroscopic shear modulus follows immediately as

Ḡxy

EBρ̄3ref
=

τ̄

2ε̄xyEBρ̄3ref
=

2 + 7r

4 (8 + 3r) cos2 ω
(A.87)

where ρ̄ref has already been de�ned in Eq. (9).
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(c)

Figure A1: Simpli�ed structure and its unit cell in a new coordinate system. (a) Sketch showing that the structure
has two symmetries: 180◦ rotation symmetry with respect to red dots, e.g., PC , PC3, PC4; gliding re�ection
symmetry with respect to red dashed lines. (b) �e unit cell in the new coordinate system x′- y′. (c) �e unit cell
for an FE simulation.

47



(a) (b)

(c)

Diagonal cut of

Figure A2: Illustration of hydrostatic loading and corresponding forces. (a) Stress state in the new coordinate
system x′- y′. (b) Equivalent forces acting on the cross sections on the unit cell. (c) Forces analysis on one square
S2 of the unit cell.
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Figure A3: Diagonal cut of S2 in the hydrostatic loading case.
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Figure A4: Unit cell for calculation of macroscopic strain, denoted within the red thick line. It contains two
squares S1 and S2 and two diamonds. �e nine vetices of the squares and diamonds are denoted by P1–P9.
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Figure A5: Forces analysis of the structure under pure shear. (a) �e stress state under x′- y′ coordinate system.
(b) Sketch illustrating that when the structure undergoes a re�ection operation along y′ = x′, the structure
remains the same, but the loading condition becomes its inverse. (c) Equivalent forces on the cross sections of
the unit cell. (d) �e forces on the re�ected structure. A superposition of (c) and (d) results in zero macroscopic
forces and thus forces in blue with prime are opposite of the corresponding forces in black without prime. (e, f)
�e forces on a square S2 and S1 of the unit cell.
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Figure A6: Diagonal cut of S2.
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